]

L1 0Ug
:’%{ cercs

The Era of Heterogeneous Compute: Challenges
and Opportunities

Sudhakar Yalamanchili

Computer Architecture and Systems Laboratory
Center for Experimental Research in Computer Systems
School of Electrical and Computer Engineering
Georgia Institute of Technology

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

S
System Diversity

Amazon EC2 GPU Instances Mobile Platforms

Heterogeneity Is
Mainstream

Keeneland System Tianhe-1A

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
No longer the purview of specialists

Outline

mDrivers and Evolution to Heterogeneous Computing
s The Ocelot Dynamic Execution Environment

s Dynamic Translation for Execution Models

s Dynamic Instrumentation of Kernels

mRelated Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

Evolution to Multicore
Power Wall :
P=aCVy f +Vylg + Vg liea b R
NVIDIA Fermi: 480 cores
(]
e Frequency
g Scaling .--urop_-q,up-opr,--.
S Pipelining | (Instruction :
5 (RISC) Level
a Parallelism)
[————
1980’s 1990’s 2000 > Intel Nehalem-EX: 8 cores

. different

variables ¢ problem
'malvlu_s
I

model

[H H] [H
.!-.'.-!*!"-!.'i.-!-'@-._.

. _'l!u _|| _||!||t & g
¥ "!-*'1"1"1"1-';'1-

: ohservatio_ris

Tilera: 64 cores

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Consolidation on Chip

Vector Extensions

AES Instructions Programmable
,\ Accelerator

Programmable
Pipeline (GENG6)

Imeluding:
Display;
DMl and
Misa 10

Intel Sandy Bridge

Multiple Models of Computation
Multi-ISA

16, PowerPC Intel Knights Corner

cores Accelerators

*Crypto Engine e =
*RegEx Engine WORE | ,,, | IACORE
*XML Engine INTERPROCESSOR NETWORK
. COHERENT COHERENT
*CP<|[press Engine cAe CAGHE

COHERENT COHERENT \DOHERENT
CACHE CACHE = CACHE

INTERPROCESSOR NETWORK

VECTOR VECTOR | VECTOR
| ACORE .. IACDRE | IACORE

FIXED FUNCTION LOGIC

MEMORY and I/0 INTERFACES

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Demand and supply have left a great gap in the middle

Major Customization Trends

Uniform ISA Multi-ISA
Asymmetric Heterogeneous

VECTOR | VECTOR .
. | InCORE 1A CORE
INTERPROCESSOR NETWORK
COHERENT COHERENT COHERENT COHERENT
CACHE CACHE CACHE CACHE

COHERENT
CACHE
aem

et
=
=1
)
=
5
=
=]
w
e
25
w

MEMORY and I/0 INTERFACES

VECTOR | VECTOR

= Minimal dlsruptlon to the = Disruptive impact on the
software ecosystems software stack?

mLimited customization? mHigher degree of customization

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

SE————
Asymmetry vs. Heterogeneity

Performance Functional Heterogeneous
Asymmetry Asymmetry

W T w
Tile Tile Tile Tile e

8)

— 4 4 & =
Tile Tile Tile Tile e

Tile Tile Tile Tile

S S =

Tile Tile Tile Tile

= Multiple voltage and m Complex cores and simple cores

frequency islands = Shared instruction set
= Different memory architecture (ISA) MUlti-1SA
technologies = Subset ISA " u g |
a STT-RAM, PCM. = Distinct microarchitecture = Microarchitecture
Flash = Fault and migrate model of = Memory & .
operation? Interconnect hierarchy
Uniform ISA Multi-ISA

<)

1Li., T., et.al., “Operating system support for shared ISA asymmetric multi-core architectures,” in WIOSCA, 2008.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Asymmetry is below the ISA and is both design time as well as operational (DVFS, reconfigurable). Now we will focus on heterogeneity and not asymmetry. What has changed here? Use the SCC figure here. 8 voltage and 28 frequency islands. Each tile can run at a different frequency. 6 banks of four tiles can run at different voltages, independent V7F control for I/O network and MCs

HPC Systems: Keeneland

Courtesy J. Vetter (GT/ORNL)

201 TFLOPS in 7 racks (90 sq ft incl service area) \

677 MFLOPS per watt on HPL (#9 on Green500, Nov 2010) \

Final delivery system planned for early 2012 ‘ B
CZZIJJ
2

' Rack

W (6 Chassis)

/ $6500 Chassis
4 (4 Nodes)

ProlLiant SL390s G7

(2CPUs, 3GPUs)

e
4 if

NVIDIA

Xeon 5660

40306
6718 GFLOPS
- 1679 GFLOPS
515 GFLOPS
67 GFLOPS 24/18 GB

GFLOPS _
Mellanox LsONNECt /Y 2

Full PCle X16
bandwidth to all GPUs

Keeneland System
(7 Racks)

201528
GFLOPS

XX 12000-Series
QLOGIC Director Switch

Integrated with NICS
Datacenter GPFS and TG

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

A Data Rich World

Large Graphs

Eharios ".-Tl':'IIZE'"E‘!?COI'I."II"-"IL]I"II'CEIUCII'!S i b
MEW WOTK) s, 5 e
light «Information i

Mixed Modalities and levels
of parallelism

[rregular, Unstructured
Computations and Data

f
Fru, Lo "'—:1..'!*--:"'{"’-5:' ey

\ S \)) |'.'-._ Fh
Irﬁa@e‘S' from r,pa;h.-ﬁist.gov,Iblpﬁ.mggﬁuﬁesmi]pany. g
\/ W ,.-'I 2= 'nll',.'

conventioninsider.com

Waterexchange.com

Trend analysis

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Consolidation in the application space

I
Enterprise: Amazon EC 2 GPU Instance

A A
| (LLE ae
e K K.

o L
o

NVIDIA Tesla

Amazon EC2 GPU Instances

Characteristics

0S CentOS 5.5

CPU 2 X Intel Xeon X5570 (quad-core "Nehalem" arch, 2.93GHz)

GPU 2 X NVIDIA Tesla "Fermi" M2050 GPU Nvidia GPU driver and CUDA toolkit 3.1
Memory 22 GB

Storage 1690 GB

1/0 10 GigE

Price $2.10/hour

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Impact on Software

m\We need ISA level stability

s Commercially, it is infeasible to
constantly re-factor and re-optimize
applications

m Avoid software “silos”

m Performance portability

m New architectures need new
algorithms

s \What about our existing
software?

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Will Heterogeneity Survive?

Ehe New York Eimes Technology

The Attack of the 'Killer Micros'

By JOHN MARKOFF
Published: May 06, 1991

nc., the king of supercomputing,

The Convex Computer Corporatior

says it is more worri "killer micros" -- compact, extremely fast work stations that sell for less than $100,000.

Indeed, Cray says the smaller machines will be even more of a threat to Convex than to it.

Cray Research has long dominated the market for the world's fastest and costliest computers. Now, John A. Rollwagen, Cray's chairman, seems
to be looking past Convex, a Dallas-based maker of mini-supercomputers, which approach the speed of supercomputers and carry a significantly

lower price.

Will We See Killer
AMPs (Asymmetric
Multicore Processors)?

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

System Software Challenges of Heterogeneity

B g e CONCENE " S

Social:pwesxe:
ey §= T i A
NMedcliqa®:itool=use™
VI 1 people many Lol
o municati 3

s Execution Portability
—Systems evolve over time
—New systems

mPerformance Optimization

Language Front-End

sNew algorithms 2
Emerging Software< E Run-Time
= |[ntrospection Stacks = e
'§ Optimizations OS/VM

* Productivity tools

Device interfaces

= Application Migration

—Protect investments In
existing code bases

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Why this is different from the embedded world

Outline

mDrivers and Evolution to Heterogeneous Computing
s The Ocelot Dynamic Execution Environment
s Dynamic Translation for Execution Models

s Dynamic Instrumentation of Kernels

mRelated Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

Ocelot: Project Goals

mEncourage proliferation of GPU computing
m Lower the barriers to entry for researchers and developers
m Establish links to industry standards, e.g., OpenCL

mUnderstand performance behavior of massively parallel, data
Intensive applications across multiple processor architecture

types

mDevelop the next generation of translation, optimization, and
execution technologies for large scale, asymmetric and
heterogeneous architectures.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Key Philosophy
mStart with an explicitly parallel internal representations

m Auto-serialization vs. auto-parallelization
m Proliferation of domain specific languages and explicitly parallel
language extensions like CUDA, OpenCL, and others

T || 20N || e || ey || kerme!
M T Kernel level model:

|1 RN
| L ol L) bulk synchronous
i U (| :

e iiHHH?

Grid of cooperative"“-.%
thread arrays \ “ 2

10—
?

2 2 control flow

Kernel-Level Model: “mm | i
NVIDIA's Parallel ‘ ,
. Cooperative Thread Array
Thread Execution - Fine-grain parallelism
(PTX)

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

o
NVIDIA’s Compute Unified Device Architecture (CUDA)

void *gpuAllocation;
cudaMalloc(&gpuAllocation, bytes);

cudaMemcpy(gpuAllocation, source, bytes,

data transfer to GPU

cudaMemcpyHostToDevice);

Y

GPU Kernel Launch

cudaMemcpy(result, gpuAllocation, bytes, -

thread arrays

cudaMemcpyDeviceToHost);

data transfer to Host

I HHH;E I __!J}__r_l_!_t_i__i_
. . TR (N
kernel<<< grllem, ctaDim >>>(Hi H ”” “ f Il
All tion, T
e Paramatars IR | R | T | A IH?NH
) e e
LU e HHI
mmn 1L | | ” 2
WL (|
Grid of cooperative \ 2 NH Z“

Cooperatwe Thread Array

mFor access to CUDA tutorials

http://developer.nvidia.com/cuda-education-training

Bulk synchronous
execution model

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Need for Execution Model Translation
CUDA

Haskell C++AMP
C/C++
Datalog OpenCL
Languages: Designed for Productivity
{ Compiler

Execution Models (EM):
Dynamic Translation of
EMs to bridge this gap

N

Hardware Architectures — Design under speed, cost, and energy constraints

inten)

H
l ¢

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Need to standardize at a higher level than the ISA, software abstractions are the great equalizer, say something about application diversity

Ocelot Vision: Multiplatform Dynamic Compilation

esd.lbl.gov PTX Emulation

= J inté
Ocelot Infrastructure P — u
Data Parallel IR —_— o8
PTX Kernel
=z , GPU Execution
Language :> |)
Front-End

Ny,
See Dla
i
fog

Ty =

i —— .
% é— L e

1

-Zv. % i | NVIDIAGPU _
Kernel Intemnal Representation] R. Domingo &
1 IS D. Kaeli (NEU)

AMD GPU

LLVM Translation

Just-in-time code

generation and — ==

optimization for data T— _§_ =
Intensive applications e

data flow graph

e Environment for i) compiler research, ii) architecture
research, and iii) productivity tools

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Dynamic compilation is a means to handle heterogeneity

Ocelot CUDA Runtime Overview
CUDA Application

m A complete
CUDA Runtime API Ocelot API reimplementation of the
CUDA Runtime API
Ocelot Device Interface = Compatible with existing
applications
NVIDIA AMD Multicore PTX Remote . . .
GPU GPU | |cPu Emulator | | Device = Link against libocelot.so
instead of libcudart
Igiﬁfm Igﬁ'f L) Iﬂ“ﬁ.aﬁon IEE&.QEQ?"“E" ITCP"P = Ocelot API Extensions

= Device switching

o
@

Kernels execute anywhere - Key to portability!

R. Domingo & D.
Kaeli (NEU)

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
What do the apps folks need to know?
Need a figure showing the CUDA API layer, and device API layer
Should include the remote device abstraction

Remote Device Layer

-~ ol
I

Local Application Remote Ocelot
Instance

mRemote procedure call layer for Ocelot device calls
mExecute local applications that run kernels remotely
= Multi-GPU applications can become multi-node

Remote Procedure Call

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot Internal Structure!?

PTX Kernel
L_BB_1:
add.s64 %rd2, %rdl, 1 I [— v T AT = . |
mul.s64 %rd3, %rd2, 4 C P N
. . mov.s64 Y%rdd, 256
CUDAAppllcatlon setp.t.s64 %pl, %rd3, Yrdd U T PTX A &
@%pl bra L BB 3 D [X Module L -
A Y
L BB 2: =} S PTX Metadata
abs.f64 %fdl, %fdl R PTX Kernel IR | (Dominator Tree, CFG,
mov.sb4 Yerd5S, 64 A (CFG) DFG)
nvcc setp.It.s64 %p2, %rd3, %rds U |IRrR S
©%p2 bra | BB_4 N |Is PTX Transformations
T E
[BB 3: | R PTX Translator/Code Generator
sin.f64 %fd2, %fd1
St.64 %fd2, [%rd0 + 4] M
E NVIDIA GPU || Multicore CPU || Emulator ||Remote Device
L BB_4:
reconverge ——
reconverge
exit

mOcelot is built with nvec and the LLVM backend
m Structured around PTX IR-> LLVM IR Translator

m Compile stock CUDA applications without modification

n Other front-ends in progress: OpenCL and Datalog

1G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for Bulk Synchronous Applications
in Heterogeneous Systems,” PACT, September 2010. .

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

For Compiler Researchers

m Pass Manager Orchestrates analysis and transformation passes

m Analysis Passes generate meta-data:
= E.g., Data-flow graph, Dominator and Post-dominator trees, Thread frontiers
= Meta-data consumed by transformations

s Transformation Passes modify the IR
= E.g., Dead code elimination, Instrumentation, etc.

Transformation
Analysis Passf——> = . 0 —> —=-=-==-=--
Pass
A
Metadata

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Outline

mDrivers and Evolution to Heterogeneous Computing
m The Ocelot Dynamic Execution Environment
mDynamic Translation for Execution Models

s Dynamic Instrumentation of Kernels

mRelated Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

Execution Model Translation

Utilize all resources

JIT for Parallel Code

Kernel launch

RCETN | AR

(i

ittt

EREH | O | NI
IS | TR (i

i it
L

ERERC | R | R
WL (e
ERE | AR | R
RTINS |t
W

Grid of cooperative
thread arrays

Serialization Transforms

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

|

M [——] R

e |......

iRt

kernel fusion/fission

FIXED FUNCTION LOGIC

IF DRAM UF

OREMIF |2 ! a HO

1A CORE ICORE ,,, | IACORE

INTERPROCESSOR NETWORK
COMERENT COHERENT
CACHE CACHE

COHERENT COHERENT
CACHE CACHE

INTERPROCESSOR NETWORK

VECTOR | VECTOR VECTOR | vecTor
IACORE | IACORE .. | IACORE 1A CORE

41 WYd 4 Wved

Al WYHD 40 WVRHE

MEMORY and /O INTERFACES

Translation to CPUs: Thread Fusion

Multicore Host Threads

Execution Manager

=

Execute a kernel &

* thread scheduling
Thread Blocks - context managementwS

=== | P |

! 4

1

1

1

: Thread

1 serialization

1

1

1

1

m Execution Model Translation
m Distinct from instruction translation
m Thread scheduling

m Dealing with specialized operations, e.g.,
custom hardware

= Handing control flow and synchronization

m Mapping thread hierarchies, address
spaces, fixed functions, etc.

\

One worker pthread per CPU core

G. Diamos, A. Kerr, S. Yalamanchili and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for Bulk-Synchronous Applications
in Heterogeneous,” PACT) 2010.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

o
Dynamic Thread Fusion

subkernel entry from

SKo0 Execution Manager (Target Thread) .+ execution manager
' | sk1

Concurrent CTAs Scheduler selects threads

. Y .
from ready queuss of active CTAs - for all threads in warp
SK1 CTA (0, 0) m
[N shared Memory: [[[[---- I e g /
’ o Ton _

Ready threads: {Tl} s s T3

return to execution

Barrier threads: { T4 T5 } P . & s s S manager
CTA (1, 0) T
shared Memory: [[[[’ | Execute subkernel
Ready threads: {T1 -TS TEL ..}
o thred - Updates thread status and
oo Barrier threads: { T2 T6 ! places in ready or barrier queues

v

Flowgraph of Subkernels Subkernel™wjth local scheduler

= Dynamic warp formation

m\What are the implications for cache behavior?
m Optimize for control flow divergence
= Improve opportunities for vectorization

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Overheads Of Translation

mSub-kernel size = kernel size

LLVM Optimizer LLVM Parser

1 9%LLVM Assembler m Amortized with the use of a
Translate PTX

4.0%1.1% Transform PTX code cache

/ % Vierify LLVM
e 3% 1 pTX Parser

s Challenge: Speeding up
translation

Parboil Scaling

1.0

- -
Il 1 threads

0.9 @ 2_threads|-
Il 3_threads
0.8 [4_threads|-
I 5_threads
0.7 1 6_threads|-
I 7 _threads
0.6 1 8 _threads|-

LLVM to x86 Code Generator

0.5

0.4

Normalized Execution Time

0.3

0.2

pns
rpes
sad
tpacf

g
£

o
<
A
=
=

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Target Scaling Using Ocelot

10°

10"

107

10~

10 B [ntel_Atom
3 AMD_Phenom
B NVIDIA 280GTX

5 5 [1
= <
LL E =

Normalized Execution Time

-
m

tpacf

fhd
pe:

m

Applications

mThe 12x Phenom vs. Atom advantage = 9.1x-11.4x speedup

mThe 40x GPU vs. Phenom advantage = 8.9x-186x speedup

m Upper end due to use of the fixed function hardware accelerators vs.
software implementation on the Phenom

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Key Performance Issues

nJIT compilation overheads
= Dead code mmm) Sub-kernels
m Kernel size
= Thread serialization granularity

Specialization +
=JIT throughput due to bottlenecks =) gode caching

m Access to the code cache
m Access to the JIT
m Balancing throughput vs. JIT compilation overhead

- Sub-kernels +
mProgram bghqwors) Dynamic Warp
= Synchronization Formation

= Control flow divergence
= Promoting locality

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Can We Do Even Better?
SSE/AVX Vector

extensions per core

e || system-|

| Agent'sH

- s | Memoryl
= == | Controlter|

Including
Display:

T DMI and
i Misc 110

mUse the attached vector units within each core

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Vectorization of Data Parallel Kernels

Serialized Scalar , Vectorized
: Warp rl.t0 = load ptrl.t0
Thread 0 rl = load ptrl : rl.tl = load ptrl.tl
; (TO, T1)
: r2.th = load ptr2 .t0
r2 = load ptr2 ' r2tl = load ptr2 t1

rlvec = insertelement rl.td, O
rl.wvec = insertelement rl.il, 1

r2.vec = insertelement r2.t0, 0
ra vec = insertelement r2.t1, 1

Thread 1 E - r3 = fmul =2 x float= rlvec, rd.vec
r3 = fmul rl, r2 !

r3th = extractelement r3, 0

- r3tl = extractelement r3, 1

store rd t0, ptra.t0
store r3, ptr3 i store r3.tl, ptri.tl

s \What about control flow divergence?
s What about memory divergence?

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Intelligent Warp Formation

Thread 0 Thread 1

BO

mYield-on-diverge: divergent
threads exit to the execution
manager

uniform

divergence

scalar ~|:

m The execution manager selects
= threads (a warp) for
vectorization

reconvergence)
m A priori specialization and code
umform{ ” caching to speed up
- translations

——————

A. Kerr, G. Diamos, and. S. Yalamanchili, “* Dynamic Compilation of Data Parallel Kernels for Vector Processors,” International
Symposium on Code Generation and Optimization, April 2012.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

S
EE]

3.9x]

U
d3
FEROE LT TTTY
TS AT
paadEiLieg]
UrEInpegaruagpesn)]
are|duwsaL
wiegas
I dl=ges
desyesaFadulg
L LA L
i Bangxa Bduws
burgual a|dung
s e (o] A dung
fLeanga|dug
AN MR dns
G|dwug
SwranoE s
52 P UL | 2Ly R | 5
Eungabueueag
LRIS
e e L
UDINEEY
LB | SSRETA | SN 2
JDSFEI0US O
PEEL -]
]
QIR
DS UL Sia
LR
Furouagebow|
gRIBETEIH
G PuledBeEsiH
125pIN|4
LS URALY S| BiI5ES
TR
ooesbaguddny
BN XEL LB BALIGT
5 | qEE IS SUDTIN|DALDT
QT LI JUCTNaAUED
FI[D
FEHEECT:|
2| OUISEIE|E
HUUE
funodo enoug
AN QIS
dyauksy
sadALpauby

=
=

Average Speedup of 1.45X over base translation
2.7

W (=]

i -
dnpaads sbaiasy

25— T

>
O]
o
-
o
p
I
]
T
T
LL
o
H
T
=)
=
T
%)
=
<
]
x
o
I
O
o
=
[va
L
I
Z
o
p
Y
o
L
T
=
o
=
o
@)
o
p
<
-
<
)
72
T
)
Y
—
I
LL
o
-
o
o
I
©]
)

m Intel SandyBridge (i7-2600), SSE 4.2, Ubuntu 11.04 x86-64, 8 hardware
threads
m Ocelot 2.0.1464 linked with LLVM 3.0.

Vectorization: Performance

System Impact

: Pré:cés_sor

Including
| Display:
S DMIEand
L] Misc 7o

:.ﬁﬁrgphlcg , ; -

m Scope of optimization is now enhanced - kernels can
execute anywhere

= Multi-ISA problem has been translated into a scheduling and
resource management problem

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY A

Summary: Dynamic Execution Environmepts

Datalog OpenCL
L Domain Specific Language]< \ . J
¥ CUDA DSLs?
f'T . “ ’
- . w
Productivity Tools =
« Correctness & Debugging —
» Performance Tuning =
« Workload Characterization g @ Kernel IR
e Instrumentation O
()
o
=
c Dynamic Execution Layer | Harmony & Ocelot
—

m Core dynamic compiler and run-time system

mStandardized IR for compilation from domain specific
languages

s Dynamic translation as a key technology

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

System Software Challenges of Heterogeneity

aExecution Portability e)
—Systems evolve over time

—New systems

=Performance Optimization - hEEEEEE L e L Er e
" Language Front-End
©
®)

= Introspection Emerging Software | | 2 Run-Time

o Stacks < g .
= Productivity tools S Dynamic 0S/VM

° Optimizations

= Application Migration \ Device interfaces

—Protect investments In
existing code bases

nvibla

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Why this is different from the embedded world

Outline

mDrivers and Evolution to Heterogeneous Computing
m The Ocelot Dynamic Execution Environment

s Dynamic Translation for Execution Models
sDynamic Instrumentation of Kernels

mRelated Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Dynamic Instrumentation as a Research Vehicle

mRun-time generation of user-defined, custom instrumentation
code for CUDA kernels

Goals of dynamic binary instrumentation
s Performance Tuning
= Observe details of program execution much faster than simulation

mCorrectness & Debugging
m Insert correctness checks and assertions

= Dynamic Optimization
= Feedback-directed optimization and scheduling

School of ECE | School of CS | Georgia Institute of Technology

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Lynx: Software Architecture

Example Instrumentation Code

Memory Efficiency

unsigned long threadld = blockThreadld();
unsigned long warpld = (blockld() * blockDim()
+ threadld) >> 5;

ON_|NSTRUCT|ON; n—Iinsert instrumentation on every instruction |
: : MEM READ:
NnvCC Libraries — only apply instrumentation to
MEM_WRITE: global memory instructions
GLOBAL:

{
\l, sharedMem[threadld] = computeBaseAddress();

/ Lynx

Instrumentation APIs

if(leastActiveThreadIlnWarp())
{
globalMem[warpld * 2] +=
uniqueElementCount(sharedMem, true);
globalMem[warpld * 2 + 1] +=1;
}
}

C-on-Demand JIT

C-PTX Translator

PTX-PTX Transformer

\l Instrumentor /

{ Ocelot Run Time]

mInspired by PIN
m Transparent instrumentation of CUDA applications

mDrive Auto-tuners and Resource Managers

N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan and S. Yalamanchili, “Lynx: Dynamic Instrumentation System for Data-Parallel
Applications on GPGPU-based Architectures,” ISPASS, April 2012.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Lynx: Features

mEnables creation of instrumentation routines that are
mSelective — instrument only what is needed
s Transparent — without changes to source code
s Customizable — user-defined
mEfficient — using JIT compilation/translation

mlmplemented as a transformation pass in Ocelot

College of Computing | School of ECE | Georgia Institute of Technology

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

iciency

Memory Effi

ing

. Computi

Example

9|paau
j0ds30y
doudyoeq

sod.

sud

b-lw

PU-LW

d
J3pusyawn|op
MaNIsodsue.
asodsuel|
9NY0I0q0S

_____________________________________|
_____________________________________|
_____________________________________|
_____________________________________|
 —
_____________________________________|
_____________________________________|
_____________________________________|
_______________________________________|
_____________________________________|
_______________________________________|
_____________________________________|

poidJejeas
URISSNRDIAISINIDY
WwopueJisend)
J91SIM] BUUASIA
[NWX13ep
jolq[epuep
buisiouagabeuw)
y9uwelbolsIH
8xg1a
uoljesbayuiddy
2INJX3L UOIIN|OAUOD
9]qeledaguoin|oAuc)
19])l3x0g
S9]04ISX2elg
2INIX312IgNJIg
|dyaUASY

_ omm%._.nmcm__q

Applications

100
8
6
a4
2

(%) Aouaidiy3 Aowsi

(#Dynamic Warps/#Memory_Transactions

Memory Efficiency

Vl
Q
o
-
o
4
I
O
w
T
LL
o
w
T
=)
=
T
%)
z
<
Q
x
o
m
O
o
<
x
|
w
Z
o
4
I}
x
i
T
>
o
=
o
(@)
a)
z
<
—
<
)
74
T
(@]
i
—
o
LL
o
-
o
o
T
O
)

Overheads

Lynx

Il Kernel Runtime

[Dynamic Instruction Count

B Branch Divergence

(s}
far

T
<
~

T
™
~

peJs
a|paau
]l
j0dsioy

sadu

sud

b-1aw
pPyj-Hw
_Iapuayawin|op
_mapasodsuel
asodsued|
9NY0l0qos
Adojosaza|dwis
alnxar|dwis
193/dwis

wopueJisen)

Applications

JRISIMIBUURSIA
BN
joiqepuep
buisiouagabeu
8x8120

2INJX3] UOIIN|OALIOD)
9|qeJedasuonn|oAuc)
133)14x0g
s3joyISpoe|g
X3 dIgn2Ig

sodA| paubi|y

o

SUOIIRIUIWINIISU| W01} SUMOPMO|S

mOverheads are proportional to control flow activity in the

kernels

Vl
Q
o
-
o
4
I
O
w
T
LL
o
w
T
=)
=
T
%)
z
<
Q
x
o
m
O
o
<
x
|
w
Z
o
4
I}
x
i
T
>
o
=
o
(@)
a)
z
<
—
<
)
74
T
(@]
i
—
o
LL
o
-
o
o
T
O
)

Comparison of Lynx with Some Existing GPU Profiling Tools

FEATURES Compute GPU Ocelot Lynx
Profiler/CUPT] Emulator
Transparency v v v
Support for Selective % v v
Online Profiling
Customization % v v
Ability to Attach/Detach @ v v
Profiling at Run-Time
Support for Comprehensive x v v
Profiling
Support for Simultaneous % v v
Profiling of Multiple Metrics
Native Device Execution v x v

School of ECE | School of CS | Georgia Institute of Technology

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

I
Applications of Lynx

m Transparent modification of functionality
= Reliable execution

mCorrectness tools
= Debugging support
m Correctness checks

m\Workload characterization
m Trace analyzers

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Applications of Ocelot

Dynamic Compilation Harmony Run-Time @

m Red Fox: Compiler for Accelerator = Mapping & scheduling
Clouds = Optimizations: speculation,

m DSL-Driven HPC Compiler [&l dependency tracking, etc.

m OpenCL Compiler & Runtime %)
(joint with H. Kim) -

Productivity Tools gl % Qgﬂa

m PTX 2.3 emulator m Workload Characterization
and Analysis

m Synthesis of models

m Correctness and debugging tools
m Trace Generation & Profiling tools

= Dynamic Instrumentation (ala PIN for
GPUS) B8B83 |~

AN

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Application: Data Warehousing

Multi-resolution

Database and Data Warehousing

i "'"ﬂ". :E.":ﬂ'

S.Clal SWepas

F"‘ P I USE‘
4 oy 1_.,4 e::jl peoplen “*

icCo '”'II'”'ILI'II:EI'ECI 5 :
newvy !
T infor m’ﬂ'LDn i

Large Graphs

mMassive data sets

mOn-line and off-line analysis
m Retail analysis
m Forecasting
= Pricing

s Combination of data queries and
computational kernels

mPotential to change a companies
business model!

Images from math.nist.gov, blog.thefuturescompany.com,melihsozdinler.blogspot.com

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Domain Specific Compilation: Red Fox

Datalog Queries

N

——){ LogicBlox Front-End

7 N

src-src
Optimization

i
v

Datalog-to-RA
(nvce + RA-Lib)

J
7 N\
|optinaion)

\

&

Harmony
Kernel IR

Harmony
Ocelot]

RA
Primitives

Language
Front-End

>Translation
Layer

Machine Neutral
> Back-End

Bandwidth achieved (GB/fs)
oo
o

sy
=

]
=

[=]

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Joint with LogicBlox Inc.

Targeting Accelerator
Clouds for meeting the
demands of data
warehousing applications

T
| == Theoretical
|| #=—a Stream-Copy

| %% SELECT : e i
|| -+ PRODUCT .

60

&4 PROJECT

+ =+ SET
—s JOIN

)

PO S e

/ " - | gt
% % E Salid it

PR T

=
(=]

10° 10° 10’ 10°
Relation size (bytes)

-
Feedback-Driven Optimization: Autotuning

Workload Characterization)
‘l’ = Not available
Decision Models £ s With CUPTI
_ J
Measurements_ Code Generation 23518 §§§§ FEisiEiRRuz R o EERL R
B8 8 sf B S g 0558 sE B
< 2% 338 TF° fSg o : E3
‘5 “ Applicatx:ns :

mUse Ocelot’s dynamic instrumentation capability
mReal-Time feedback drives the Ocelot kernel JIT

m Decision models to drive existing/new auto-tuners

= Change data layout to improve memory efficiency
= Use different algorithms

m Selective invocation - hot path profiling - algorithm selection

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

발표자
프레젠테이션 노트
Naila was able to get instrumented data and invoke the JIT. We have not yet done anything fancy with it.

Feedback-Driven Resource Management

"""t { Applications]
ﬂ)celot’s Lynx : \
1
1
i [Management Layer]
- 1
: A 1 1
1 T
/< N\ i [GPU Clusters
| Instrumentation APIs I 1 ! J
o
| C-on-Demand JIT I g
E ~
| cprxTransiaor }E . {Instrumented] {Instrumented] {Instrumented
| PTX-PTX Transformer I N PTX PTX PTX g
k N~ > /

mReal time customized information available about GPU usage
mCan drive scheduling decisions

= Can drive management policies, e.g., power, throughput, etc.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Workload Characterization and Analysis

SM Load Imbalance (Mandelbrot)

@
LA
~

Thread

Intra-Thread Data Sharing

Id shared

S

c o o © 29 <
(=] (=] < o
S 38 8 S S <
c o o o © O
[=fs] w =
S 883 o o
55
85
0=
7 ¥
)
= g2 2E| |88 £
E ARy
= N\
<: x| 5
@ B % E
2 & 8t
= I - M R
g gl—=i =i = |
= F|—=i— i
o —_— —_—
g :
o
o
[&]
ﬁ |dY uoneliauas) adel| u
4 N\ [rJ
| -
R & 3
c x 2 = @
S 393 B o ©
T 2 O = = 0
2 =< K w
= = L
225 IS S K
-2 E B ©
< 3 m — o
= @ = B
= T
. /N J

Ocelot PTX Emulator

Id.shared

l

O
st.global

mad.f32

mad.f32
st.shared

Id.global
st.shared

Activity Factor

H inter-thread loads / |d.shared

— 20EIANY HOS

{ Japuayawnjop,
L asodsuey
— 2114190105
—— LA URIS

[Id.shared f dynamic instructions
v
£

—— 100]2PUEH
—— L1510 UE0 R0

——— %0

—— /1009]|qEIRHSS

- Poidie|ess
— 0112ND2Y

b ueissnesanisinaay

1 wopurnseny
255330141504

[r—— TR]
1 Ja3sim BuuBsIap
— | {4UES320

— OGN
— (OO NWOHEDauoK

— D EUOR
= inpgriaep

— 05 7W2I6015IH
e OWEIGOYSIH
—— 15PN
— L1110}S U US|EANISES

55 sanjenuabig

— O T/PPHIMO
— 248170

1 aJnxXa uonnieauc)

— (17 L4AUCIN0AUOD
} 1o)1%0g
{ sajouyasyoeg
{ ouoyg
[r—— TR [LTI
. { aumxaLanog
2 g 3 g8 ©
@ ¥ A&

(%) uonael

W abeianyas
W
Wy

—

E

o

[=]

o

E——

—
I

40vdL

-
4
E
n
@ g ogied

O-14m

SCERE]

d2

FELITENEITL TGS

m
Jaqidi=qos
Auoa|qeledas
Aergabiequedss
uess

pougie|es

uoianpay

UBISSNEDBAISINIEY

S3|214eg

144ueadg

, A characterization and analysis of PTX kernels," IEEE International Symposium on Workload Characterization,

Apoan

i

NdDINWoUEDIUOT—=

oleIBUoK

d2)5IMBUUSSIaN

InpyxLIER

jougiap

Buisiouagabewy

poweiboisiH
ggzweiboisiy
J9spingg

WLIOJSURLL YS|BMIS!

sanjeauabig
1xg
aTieeHIMg

, andES. Yalamanch

8%g120

aUNIXaL uonNjoAUS)

lamos

azidduonnioaucy

Ja3)14%og

sajoydsde|g

h
———
—
—
—
—
—— 10 PUEISENG
——
—
—
—
—
—

3ueyg

suondg|eiwourg

ainyxal gnag

g 8 8§ R °

A. Kerr, G.D

(%5) J032@4 ANAIDY

Austin, TX, USA,

o
-
o
4
I
O
i
T
LL
o
w
T
S)
=
T
%)
z
<
Q
x
m
O
o
<
x
|
w
Z
o
4
I}
x
i
T
>
o
=
o
@)
a)
z
<
—
<
)
74
T
(@]
i
—
o
LL
o
-
o
o
T
O
)

발표자
프레젠테이션 노트
Imagine if you had the same interface between the emulator and the device. Then all of the trace analyzers we have developed for the emulator can be used with instrumented data, e.g. workload characterization

Constructing Performance Models: Eiger

mDevelop a portable methodology to discover relationships
between architectures and applications

Eiiﬁﬂi.iﬁ..

Adaptevas multicore from electronicdesign.com

mExtensions to Ocelot for the synthesis of performance models
m Used in macroscale simulation models
m Used in JIT compilers to make optimization decisions
m Used in run-times to make scheduling decisions

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

o
Eiger Methodology

MySaL MySaL MySaL MysaL
Ocelot JIT RDBM RDBM RDEM RDBM [SST/Macro
|)
¥ . Intermediate results
- Intermediste results o
| | I | Soncia
Cluster membership, ationa
Recorded metrics - i i Wodel Performance models y
re - Analysis projected metrics Construction Reporting Laboratories
Passes
ogram P BMNCE CO
rR \/"’ I . I
& T |
......... i Runtime and
Energy Prediction

Application

T Compiler PCA, Varimax, and
Instrumentation — Cluster analysis
(C, C++, assembly)

(Python, SciPy)

(Pythan, SciPy. (Python, SciPy)

mUse data analysis techniques to uncover application-
architecture relationships
m Discover and synthesize analytic models

mExtensible in source data, analysis passes, model
construction techniques, and destination/use

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot Team, Sponsors and Collaborators

- Ocelot Team

= Gregory Diamos, Rodrigo Dominguez (NEU), Naila
Farooqui, Andrew Kerr, Ashwin Lele, Si Li, Tri Pho, Jin
Wang, Haicheng Wu, Sudhakar Yalamanchili & several
open source contributors

IBM Research
AMD 1 @ 1 LOGICBLOX’

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Thank You

Questions?

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

	슬라이드 번호 1
	System Diversity
	Outline
	Evolution to Multicore
	Consolidation on Chip
	Major Customization Trends
	Asymmetry vs. Heterogeneity
	HPC Systems: Keeneland
	A Data Rich World
	Enterprise: Amazon EC 2 GPU Instance
	Impact on Software
	Will Heterogeneity Survive?
	System Software Challenges of Heterogeneity
	Outline
	Ocelot: Project Goals
	Key Philosophy
	NVIDIA’s Compute Unified Device Architecture (CUDA)
	Need for Execution Model Translation
	Ocelot Vision: Multiplatform Dynamic Compilation
	Ocelot CUDA Runtime Overview
	Remote Device Layer
	Ocelot Internal Structure1
	For Compiler Researchers
	Outline
	Execution Model Translation
	Translation to CPUs: Thread Fusion
	Dynamic Thread Fusion
	Overheads Of Translation
	Target Scaling Using Ocelot
	Key Performance Issues
	Can We Do Even Better?
	Vectorization of Data Parallel Kernels
	Intelligent Warp Formation
	Vectorization: Performance
	System Impact
	Summary: Dynamic Execution Environments
	System Software Challenges of Heterogeneity
	Outline
	Dynamic Instrumentation as a Research Vehicle
	Lynx: Software Architecture
	Lynx: Features
	Example: Computing Memory Efficiency
	Lynx: Overheads
	Comparison of Lynx with Some Existing GPU Profiling Tools
	Applications of Lynx
	Applications of Ocelot
	Application: Data Warehousing
	Domain Specific Compilation: Red Fox
	Feedback-Driven Optimization: Autotuning
	Feedback-Driven Resource Management	
	Workload Characterization and Analysis
	Constructing Performance Models: Eiger
	Eiger Methodology
	Ocelot Team, Sponsors and Collaborators
	Thank You���Questions?

