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System Diversity 

Keeneland System Tianhe-1A 

Amazon EC2 GPU Instances 

Heterogeneity is 
Mainstream 

Mobile Platforms 
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발표자
프레젠테이션 노트
No longer the purview of specialists
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Outline 

Drivers and Evolution to Heterogeneous Computing  

The Ocelot Dynamic Execution Environment 

Dynamic Translation for Execution Models 

Dynamic Instrumentation of Kernels 

Related Projects 
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Evolution to Multicore 

Pipelining 
(RISC) 

Frequency 
Scaling 

(Instruction 
Level 

Parallelism)  

Core Scaling 
(Multicore) 

1980’s 1990’s 2000  

P
er

fo
rm

an
ce

 

Intel Nehalem-EX: 8 cores 

NVIDIA Fermi: 480 cores 

Tilera: 64 cores 

leakddstdddd IVIVfCVP ++= 2α
Power Wall 
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Consolidation on Chip 
Vector Extensions 
AES Instructions 

Programmable 
Pipeline (GEN6) 

Intel Sandy Bridge 

Programmable 
Accelerator 

PowerEN 

16, PowerPC 
cores Accelerators 

•Crypto Engine 
•RegEx Engine 
•XML Engine 
•CP<[press Engine 

Intel Knights Corner 

Multiple Models of Computation 
Multi-ISA 
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발표자
프레젠테이션 노트
Demand and supply have left a great gap in the middle
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Major Customization Trends 

Disruptive impact on the 
software stack? 
Higher degree of customization 

PowerEN 

Uniform ISA 
Asymmetric 

Minimal disruption to the 
software ecosystems 
Limited customization?  

Multi-ISA 
Heterogeneous 

Knights Corner 
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Asymmetry vs. Heterogeneity 

 Multiple voltage and 
frequency islands 

 Different memory 
technologies 

 STT-RAM, PCM, 
Flash 
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Performance 
Asymmetry 

Functional 
Asymmetry 

Heterogeneous 

 Complex cores and simple cores 
 Shared instruction set 

architecture (ISA) 
 Subset ISA 
 Distinct  microarchitecture 
 Fault and migrate model of 

operation1 

Uniform ISA  Multi-ISA 

1Li., T., et.al., “Operating system support for shared ISA asymmetric multi-core architectures,” in WIOSCA, 2008. 

 Multi-ISA 

 Microarchitecture 
 Memory & 

Interconnect hierarchy 

발표자
프레젠테이션 노트
Asymmetry is below the ISA and is both design time as well as operational (DVFS, reconfigurable). Now we will focus on heterogeneity and not asymmetry. What has changed here? Use the SCC figure here. 8 voltage and 28 frequency islands. Each tile can run at a different frequency. 6 banks of four tiles can run at different voltages, independent V7F control for I/O network and MCs
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HPC Systems: Keeneland 

8 

201 TFLOPS in 7 racks (90 sq ft incl service area) 

677 MFLOPS per watt on HPL (#9 on Green500, Nov 2010) 

Final delivery system planned for early 2012 Keeneland System 
(7 Racks) 

ProLiant SL390s G7 
(2CPUs,  3GPUs) 

S6500 Chassis 
(4 Nodes) 

Rack 
(6 Chassis) 

M2070 

Xeon 5660 

12000-Series 
Director Switch 

Integrated with NICS 
Datacenter GPFS and TG Full PCIe X16 

bandwidth to all GPUs 

67 
GFLOPS 

515 
GFLOPS 

1679 
GFLOPS 
24/18 GB 

6718 
GFLOPS 

40306 
GFLOPS 

201528 
GFLOPS 

Courtesy J. Vetter (GT/ORNL) 
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A Data Rich World 

topnews.net.tz 

Waterexchange.com 

conventioninsider.com 

Mixed Modalities and levels 
of parallelism 

Trend analysis 

Pharma 
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Large Graphs 

Images from math.nist.gov, blog.thefuturescompany.com,melihsozdinler.blogspot.com 

Irregular, Unstructured 
Computations and Data 

 

발표자
프레젠테이션 노트
Consolidation in the application space
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Enterprise: Amazon EC 2 GPU Instance 

Amazon EC2 GPU Instances 
Elements Characteristics 

OS CentOS 5.5 

CPU 2 x Intel Xeon X5570 (quad-core "Nehalem" arch, 2.93GHz) 

GPU 2 x NVIDIA Tesla "Fermi" M2050 GPU Nvidia GPU driver and CUDA toolkit 3.1 

Memory 22 GB 

Storage 1690 GB 

I/O 10 GigE 

Price $2.10/hour 

NVIDIA Tesla 

10 
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Impact on Software 

We need ISA level stability 
 Commercially, it is infeasible to 

constantly re-factor and re-optimize 
applications 

 Avoid software “silos” 

Performance portability 
New architectures need new 

algorithms 

What about our existing 
software? 
 
 

At System Scale 

At Chip Scale 

11 
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Will Heterogeneity Survive? 

12 

Will We See Killer 
AMPs (Asymmetric 

Multicore Processors)? 
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System Software Challenges of Heterogeneity 

Execution Portability 
–Systems evolve over time 
–New systems 

esd.lbl.gov 

Sandia.gov 

Run-Time 

Dynamic 
Optimizations 

OS/VM 

Device interfaces 

Language Front-End 

Emerging Software 
Stacks 
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od

uc
tiv

ity
 T

oo
ls

 

Performance Optimization 
New algorithms 

Introspection 
Productivity tools 

Application Migration 
–Protect investments in 
existing code bases 
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발표자
프레젠테이션 노트
Why this is different from the embedded world
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Outline 

Drivers and Evolution to Heterogeneous Computing  

The Ocelot Dynamic Execution Environment 

Dynamic Translation for Execution Models 

Dynamic Instrumentation of Kernels 

Related Projects 
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Ocelot: Project Goals 

Encourage proliferation of GPU computing 
 Lower the barriers to entry for researchers and developers 
 Establish links to industry standards, e.g., OpenCL 

Understand performance behavior of massively  parallel, data 
intensive applications across multiple processor architecture 
types 

Develop the next  generation of translation, optimization, and 
execution technologies for large scale, asymmetric and 
heterogeneous architectures. 

15 

http://code.google.com/p/gpuocelot/ 

15 
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Key Philosophy 

Start with an explicitly parallel internal representations 
 Auto-serialization vs. auto-parallelization 
 Proliferation of domain specific languages and explicitly parallel 

language extensions like CUDA, OpenCL, and others 
 

16 

Kernel level model:  
bulk synchronous 
processing (BSP)  

Kernel-Level Model: 
NVIDIA’s Parallel 
Thread Execution 

(PTX) 
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NVIDIA’s Compute Unified Device Architecture (CUDA) 

http://developer.nvidia.com/cuda-education-training 
For access to CUDA tutorials 

 

Bulk synchronous 
execution model  

17 
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Need for Execution Model Translation   

Hardware Architectures – Design under speed, cost, and energy constraints 

C/C++ 
CUDA 

Datalog 
Haskell 

OpenCL 
C++AMP 

Languages: Designed for Productivity 

Execution Models (EM): 
Dynamic Translation of 
EMs  to bridge this gap Run 

Time 

Tools 

Compiler 
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발표자
프레젠테이션 노트
Need to standardize at a higher level than the ISA, software abstractions are the great equalizer, say something about application diversity
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Ocelot Vision: Multiplatform Dynamic Compilation 

Just-in-time code 
generation and 

optimization for data 
intensive applications 

esd.lbl.gov 

R. Domingo & 
D. Kaeli (NEU) 

Data Parallel IR 

Language 
Front-End 

• Environment for  i) compiler research, ii) architecture 
research, and iii) productivity tools 

19 
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발표자
프레젠테이션 노트
Dynamic compilation is a means to handle heterogeneity
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Ocelot CUDA Runtime Overview 
20 

Kernels execute anywhere  Key to portability! 

A complete 
reimplementation of the 
CUDA Runtime API 

Compatible with existing 
applications 
 Link against libocelot.so 

instead of libcudart 

Ocelot API Extensions 

Device switching 

 R. Domingo & D. 
Kaeli (NEU) 
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발표자
프레젠테이션 노트
What do the apps folks need to know?Need a figure showing the CUDA API layer, and device API layerShould include the remote device abstraction
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Remote Device Layer 

Remote procedure call layer for Ocelot device calls 
Execute local applications that run kernels remotely 
Multi-GPU applications can become multi-node 

21 

21 
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Ocelot Internal Structure1  
PTX Kernel 

 

1G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for Bulk Synchronous Applications 
in Heterogeneous Systems,” PACT, September 2010. . 

CUDA Application 

nvcc 

Ocelot is built with nvcc and the LLVM backend 
 Structured around PTX IR LLVM IR Translator 

Compile stock CUDA applications without modification 

Other front-ends in progress: OpenCL and Datalog 
 

22 
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For Compiler Researchers  

Analysis Pass Transformation 
Pass 

Metadata 

 Pass Manager Orchestrates analysis and transformation passes 
 Analysis Passes generate meta-data:  

 E.g., Data-flow graph, Dominator and Post-dominator trees,  Thread frontiers 
 Meta-data consumed by transformations 

  Transformation Passes modify the IR 
 E.g., Dead code elimination, Instrumentation, etc.  

Pass Manager 
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Outline 

Drivers and Evolution to Heterogeneous Computing  

The Ocelot Dynamic Execution Environment 

Dynamic Translation for Execution Models 

Dynamic Instrumentation of Kernels 

Related Projects 
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Execution Model Translation 

Serialization Transforms 

JIT for Parallel Code  

Utilize all resources 

25 

kernel fusion/fission 
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Translation to CPUs: Thread Fusion 
Execution Manager 
• thread scheduling 
• context management Thread Blocks 

Multicore Host Threads 

Thread 
serialization 

 Execution Model Translation 
 Distinct from instruction translation 
 Thread scheduling 
 Dealing with specialized operations, e.g., 

custom hardware 
 Handing control flow and synchronization 
 Mapping thread hierarchies, address 

spaces, fixed functions, etc.  

One worker pthread per CPU core 

Execute a kernel 

26 

G. Diamos, A. Kerr, S. Yalamanchili and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for Bulk-Synchronous Applications 
in Heterogeneous,” PACT)  2010.  
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Dynamic Thread Fusion 

Dynamic warp formation 
What are the implications for cache behavior? 

Optimize for control flow divergence 
Improve opportunities for vectorization 

27 

Each thread 
executes this code 
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Overheads Of Translation 
Sub-kernel size = kernel size  

Amortized with the use of a 
code cache 

Challenge: Speeding up 
translation 

Parboil Scaling 

28 
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Target Scaling Using Ocelot  

The 12x Phenom vs. Atom advantage  9.1x-11.4x speedup 
The 40x GPU vs. Phenom advantage  8.9x-186x speedup 

 Upper end due to use of the fixed function hardware accelerators vs. 
software implementation on the Phenom 

29 
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Key Performance Issues 

JIT compilation overheads 
Dead code 
 Kernel size 
 Thread serialization granularity 

JIT throughput due to bottlenecks 
 Access to the code cache 
 Access to the JIT 
 Balancing throughput vs. JIT compilation overhead 

Program behaviors 
 Synchronization 
 Control flow divergence 
 Promoting locality 

30 

Specialization + 
Code caching  

Sub-kernels 

Sub-kernels + 
Dynamic Warp 

Formation 
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Can We Do Even Better? 

Use the attached vector units within each core 

SSE/AVX Vector 
extensions per core 

31 
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Vectorization of Data Parallel Kernels 

What about control flow divergence? 
What about memory divergence? 

32 
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Intelligent Warp Formation  

Yield-on-diverge: divergent 
threads exit to the execution 
manager 

The execution manager selects 
threads (a warp) for 
vectorization 

A priori specialization and code 
caching to speed up 
translations 

33 

A. Kerr, G. Diamos, and. S. Yalamanchili, “ Dynamic Compilation of Data Parallel Kernels for Vector Processors,” International 
Symposium on Code Generation and Optimization, April 2012.  
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Vectorization: Performance 

34 34 

 Intel SandyBridge (i7-2600), SSE 4.2, Ubuntu 11.04 x86-64, 8 hardware 
threads 

Ocelot 2.0.1464 linked with LLVM 3.0. 

Average Speedup of 1.45X over base translation 
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System Impact 

Scope of optimization is now enhanced  kernels can 
execute anywhere 
Multi-ISA problem has been translated into a scheduling and 
resource management problem 
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Summary: Dynamic Execution Environments 

Language Layer 

Dynamic Execution Layer In
tro

sp
ec

tio
n 

La
ye

r 

Core dynamic compiler and run-time system 
Standardized IR for compilation from domain specific 
languages  
Dynamic translation as a key technology 

Domain Specific Language  
Datalog 

CUDA 

OpenCL 

DSLs? 

Harmony & Ocelot 

Productivity Tools 
• Correctness & Debugging 
• Performance Tuning 
• Workload Characterization 
• Instrumentation 

36 

Kernel IR  
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System Software Challenges of Heterogeneity 

Execution Portability 
–Systems evolve over time 
–New systems 

esd.lbl.gov 

math.harvard.edu 

Sandia.gov 

Run-Time 

Dynamic 
Optimizations 

OS/VM 

Device interfaces 

Language Front-End 

Emerging Software 
Stacks 

Pr
od

uc
tiv

ity
 T

oo
ls

 

Performance Optimization 

Introspection 
Productivity tools 

Application Migration 
–Protect investments in 
existing code bases 
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발표자
프레젠테이션 노트
Why this is different from the embedded world
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Outline 

Drivers and Evolution to Heterogeneous Computing  

The Ocelot Dynamic Execution Environment 

Dynamic Translation for Execution Models 

Dynamic Instrumentation of Kernels 

Related Projects 

38 
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Dynamic Instrumentation as a Research Vehicle 

Run-time generation of user-defined, custom instrumentation 
code for CUDA kernels 

Goals of dynamic binary instrumentation 
Performance Tuning 

Observe details of program execution much faster than simulation 

Correctness & Debugging 
 Insert correctness checks and assertions 

Dynamic Optimization 
 Feedback-directed optimization and scheduling 

39 School of ECE | School of CS | Georgia Institute of Technology 
39 
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Lynx: Software Architecture 

Inspired by PIN 

Transparent instrumentation of CUDA applications 

Drive Auto-tuners and Resource Managers 

40 

nvcc 

PTX 

Ocelot Run Time 

CUDA 

Libraries 

Instrumentation APIs 

In
st

ru
m

en
to
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C-on-Demand JIT 

C-PTX Translator 

PTX-PTX Transformer 

Lynx 

Example Instrumentation Code 

40 

N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan and S. Yalamanchili, “Lynx: Dynamic Instrumentation System for Data-Parallel 
Applications on GPGPU-based Architectures,” ISPASS, April 2012.  
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Lynx: Features 

Enables creation of instrumentation routines that are 
Selective – instrument only what is needed 
Transparent – without changes to source code 
Customizable – user-defined 
Efficient – using JIT compilation/translation 

Implemented as a transformation pass in Ocelot 

College of Computing | School of ECE | Georgia Institute of Technology 41 

41 
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Example: Computing Memory Efficiency 

Memory Efficiency = (#Dynamic Warps/#Memory_Transactions 

42 
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Lynx: Overheads 

43 

Overheads are proportional to control flow activity in the 
kernels 
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Comparison of Lynx with Some Existing GPU Profiling Tools 

44 School of ECE | School of CS | Georgia Institute of Technology 

FEATURES Compute 
Profiler/CUPTI 

GPU Ocelot 
Emulator 

Lynx 

Transparency    
Support for Selective 

Online Profiling 
   

Customization    
Ability to Attach/Detach 
Profiling at Run-Time 

   

Support for Comprehensive 
Profiling 

   

Support for Simultaneous 
Profiling of Multiple Metrics 

   

Native Device Execution    

44 
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Applications of Lynx 

Transparent modification of functionality 
 Reliable execution 

Correctness tools 
Debugging support 
 Correctness checks 

Workload characterization 
 Trace analyzers 

45 
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Applications of Ocelot 

46 

Harmony Run-Time 

Productivity Tools 

Dynamic Compilation 

Eiger: 

 PTX 2.3 emulator 
 Correctness and debugging tools 
 Trace Generation & Profiling tools 
 Dynamic Instrumentation (ala PIN for 

GPUs) 

 Red Fox: Compiler for Accelerator 
Clouds 

 DSL-Driven HPC Compiler  
 OpenCL Compiler & Runtime 

(joint with H. Kim) 

 Workload Characterization 
and Analysis 

 Synthesis of models 

 Mapping & scheduling 
 Optimizations: speculation, 

dependency tracking, etc.   

46 

Done 
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Application: Data Warehousing 

Massive data sets 

On-line and off-line analysis 
 Retail analysis 
 Forecasting 
 Pricing 
……  

Combination of data queries and 
computational kernels 

Potential to change a companies 
business model! 

Multi-resolution  

Large Graphs 

Images from math.nist.gov, blog.thefuturescompany.com,melihsozdinler.blogspot.com 

Database and Data  Warehousing  

47 
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Domain Specific Compilation: Red Fox 

48 

LogicBlox Front-End 

Datalog-to-RA 
(nvcc + RA-Lib) 

Harmony 

src-src 
Optimization 

Ocelot 

IR 
Optimization  

Datalog Queries 

RA 
Primitives 

Language 
Front-End 

Translation 
Layer 

Machine Neutral 
Back-End 

Targeting Accelerator 
Clouds for meeting the 

demands of data 
warehousing applications 

Joint with LogicBlox Inc. 

Harmony 
Kernel IR 
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Feedback-Driven Optimization: Autotuning 

Use Ocelot’s dynamic instrumentation capability 
Real-Time feedback drives the Ocelot kernel JIT 
Decision models to drive existing/new auto-tuners 

 Change data layout to improve memory efficiency 
 Use different algorithms 
 Selective invocation  hot path profiling  algorithm selection 

49 

Decision Models 

Measurements Code Generation 

Workload Characterization 

Not available 
with CUPTI 

49 

발표자
프레젠테이션 노트
Naila was able to get instrumented data and invoke the JIT. We have not yet done anything fancy with it. 
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OCelot 

Feedback-Driven Resource Management  

Real time customized information available about GPU usage 

Can drive scheduling decisions 

Can drive management policies, e.g., power, throughput, etc.  

50 

Instrumented 
PTX 

Instrumented 
PTX 

Applications 

Management Layer 

GPU Clusters 

Instrumented 
PTX 

PTX 

Instrumentation APIs 

In
st

ru
m

en
to

r 

C-on-Demand JIT 

C-PTX Translator 

PTX-PTX Transformer 

Instrumentation 

50 

Ocelot’s Lynx 
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Workload Characterization and Analysis 
 SM Load Imbalance (Mandelbrot) 

Intra-Thread Data Sharing 

Activity Factor 

51 

A. Kerr, G. Diamos, and S. Yalamanchili, A characterization and analysis of  PTX kernels,"  IEEE International Symposium on Workload Characterization, 
Austin, TX, USA, 

October 200 

발표자
프레젠테이션 노트
Imagine if you had the same interface between the emulator and the device. Then all of the trace analyzers we have developed for the emulator can be used with instrumented data, e.g. workload characterization
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Constructing Performance Models: Eiger 

Develop a portable methodology to discover relationships 
between architectures and applications 

52 

Adapteva’s multicore from electronicdesign.com 

Extensions to Ocelot for the synthesis of performance models 
 Used in macroscale simulation models 
 Used in JIT compilers to make optimization decisions 
 Used in run-times to make scheduling decisions 
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Eiger Methodology 

Use data analysis techniques to uncover application-
architecture relationships 
Discover and synthesize analytic models 

Extensible in source data, analysis passes, model 
construction techniques, and destination/use 

53 

Ocelot JIT SST/Macro 
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Ocelot Team, Sponsors and Collaborators 

• Ocelot Team 
 Gregory Diamos, Rodrigo Dominguez (NEU), Naila 

Farooqui, Andrew Kerr, Ashwin Lele, Si Li, Tri Pho, Jin 
Wang, Haicheng Wu, Sudhakar Yalamanchili & several 
open source contributors 
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Thank You 
 
 

Questions? 
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