
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

The Era of Heterogeneous Compute: Challenges
and Opportunities

Sudhakar Yalamanchili

Computer Architecture and Systems Laboratory
Center for Experimental Research in Computer Systems

School of Electrical and Computer Engineering
Georgia Institute of Technology

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

System Diversity

Keeneland System Tianhe-1A

Amazon EC2 GPU Instances

Heterogeneity is
Mainstream

Mobile Platforms

2

발표자
프레젠테이션 노트
No longer the purview of specialists

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Outline

Drivers and Evolution to Heterogeneous Computing

The Ocelot Dynamic Execution Environment

Dynamic Translation for Execution Models

Dynamic Instrumentation of Kernels

Related Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Evolution to Multicore

Pipelining
(RISC)

Frequency
Scaling

(Instruction
Level

Parallelism)

Core Scaling
(Multicore)

1980’s 1990’s 2000

P
er

fo
rm

an
ce

Intel Nehalem-EX: 8 cores

NVIDIA Fermi: 480 cores

Tilera: 64 cores

leakddstdddd IVIVfCVP ++= 2α
Power Wall

4

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Consolidation on Chip
Vector Extensions
AES Instructions

Programmable
Pipeline (GEN6)

Intel Sandy Bridge

Programmable
Accelerator

PowerEN

16, PowerPC
cores Accelerators

•Crypto Engine
•RegEx Engine
•XML Engine
•CP<[press Engine

Intel Knights Corner

Multiple Models of Computation
Multi-ISA

5

발표자
프레젠테이션 노트
Demand and supply have left a great gap in the middle

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Major Customization Trends

Disruptive impact on the
software stack?
Higher degree of customization

PowerEN

Uniform ISA
Asymmetric

Minimal disruption to the
software ecosystems
Limited customization?

Multi-ISA
Heterogeneous

Knights Corner

6

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Asymmetry vs. Heterogeneity

 Multiple voltage and
frequency islands

 Different memory
technologies

 STT-RAM, PCM,
Flash

7

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

M
C

M
C

M
C

M
C

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

M
C

M
C

M
C

M
C

Performance
Asymmetry

Functional
Asymmetry

Heterogeneous

 Complex cores and simple cores
 Shared instruction set

architecture (ISA)
 Subset ISA
 Distinct microarchitecture
 Fault and migrate model of

operation1

Uniform ISA Multi-ISA

1Li., T., et.al., “Operating system support for shared ISA asymmetric multi-core architectures,” in WIOSCA, 2008.

 Multi-ISA

 Microarchitecture
 Memory &

Interconnect hierarchy

발표자
프레젠테이션 노트
Asymmetry is below the ISA and is both design time as well as operational (DVFS, reconfigurable). Now we will focus on heterogeneity and not asymmetry. What has changed here? Use the SCC figure here. 8 voltage and 28 frequency islands. Each tile can run at a different frequency. 6 banks of four tiles can run at different voltages, independent V7F control for I/O network and MCs

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

HPC Systems: Keeneland

8

201 TFLOPS in 7 racks (90 sq ft incl service area)

677 MFLOPS per watt on HPL (#9 on Green500, Nov 2010)

Final delivery system planned for early 2012 Keeneland System
(7 Racks)

ProLiant SL390s G7
(2CPUs, 3GPUs)

S6500 Chassis
(4 Nodes)

Rack
(6 Chassis)

M2070

Xeon 5660

12000-Series
Director Switch

Integrated with NICS
Datacenter GPFS and TG Full PCIe X16

bandwidth to all GPUs

67
GFLOPS

515
GFLOPS

1679
GFLOPS
24/18 GB

6718
GFLOPS

40306
GFLOPS

201528
GFLOPS

Courtesy J. Vetter (GT/ORNL)

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

A Data Rich World

topnews.net.tz

Waterexchange.com

conventioninsider.com

Mixed Modalities and levels
of parallelism

Trend analysis

Pharma

9

Large Graphs

Images from math.nist.gov, blog.thefuturescompany.com,melihsozdinler.blogspot.com

Irregular, Unstructured
Computations and Data

발표자
프레젠테이션 노트
Consolidation in the application space

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Enterprise: Amazon EC 2 GPU Instance

Amazon EC2 GPU Instances
Elements Characteristics

OS CentOS 5.5

CPU 2 x Intel Xeon X5570 (quad-core "Nehalem" arch, 2.93GHz)

GPU 2 x NVIDIA Tesla "Fermi" M2050 GPU Nvidia GPU driver and CUDA toolkit 3.1

Memory 22 GB

Storage 1690 GB

I/O 10 GigE

Price $2.10/hour

NVIDIA Tesla

10

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Impact on Software

We need ISA level stability
 Commercially, it is infeasible to

constantly re-factor and re-optimize
applications

 Avoid software “silos”

Performance portability
New architectures need new

algorithms

What about our existing
software?

At System Scale

At Chip Scale

11

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Will Heterogeneity Survive?

12

Will We See Killer
AMPs (Asymmetric

Multicore Processors)?

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

System Software Challenges of Heterogeneity

Execution Portability
–Systems evolve over time
–New systems

esd.lbl.gov

Sandia.gov

Run-Time

Dynamic
Optimizations

OS/VM

Device interfaces

Language Front-End

Emerging Software
Stacks

Pr
od

uc
tiv

ity
 T

oo
ls

Performance Optimization
New algorithms

Introspection
Productivity tools

Application Migration
–Protect investments in
existing code bases

13

발표자
프레젠테이션 노트
Why this is different from the embedded world

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Outline

Drivers and Evolution to Heterogeneous Computing

The Ocelot Dynamic Execution Environment

Dynamic Translation for Execution Models

Dynamic Instrumentation of Kernels

Related Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot: Project Goals

Encourage proliferation of GPU computing
 Lower the barriers to entry for researchers and developers
 Establish links to industry standards, e.g., OpenCL

Understand performance behavior of massively parallel, data
intensive applications across multiple processor architecture
types

Develop the next generation of translation, optimization, and
execution technologies for large scale, asymmetric and
heterogeneous architectures.

15

http://code.google.com/p/gpuocelot/

15

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Key Philosophy

Start with an explicitly parallel internal representations
 Auto-serialization vs. auto-parallelization
 Proliferation of domain specific languages and explicitly parallel

language extensions like CUDA, OpenCL, and others

16

Kernel level model:
bulk synchronous
processing (BSP)

Kernel-Level Model:
NVIDIA’s Parallel
Thread Execution

(PTX)

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

NVIDIA’s Compute Unified Device Architecture (CUDA)

http://developer.nvidia.com/cuda-education-training
For access to CUDA tutorials

Bulk synchronous
execution model

17

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Need for Execution Model Translation

Hardware Architectures – Design under speed, cost, and energy constraints

C/C++
CUDA

Datalog
Haskell

OpenCL
C++AMP

Languages: Designed for Productivity

Execution Models (EM):
Dynamic Translation of
EMs to bridge this gap Run

Time

Tools

Compiler

18

발표자
프레젠테이션 노트
Need to standardize at a higher level than the ISA, software abstractions are the great equalizer, say something about application diversity

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot Vision: Multiplatform Dynamic Compilation

Just-in-time code
generation and

optimization for data
intensive applications

esd.lbl.gov

R. Domingo &
D. Kaeli (NEU)

Data Parallel IR

Language
Front-End

• Environment for i) compiler research, ii) architecture
research, and iii) productivity tools

19

19

발표자
프레젠테이션 노트
Dynamic compilation is a means to handle heterogeneity

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot CUDA Runtime Overview
20

Kernels execute anywhere Key to portability!

A complete
reimplementation of the
CUDA Runtime API

Compatible with existing
applications
 Link against libocelot.so

instead of libcudart

Ocelot API Extensions

Device switching

 R. Domingo & D.
Kaeli (NEU)

20

발표자
프레젠테이션 노트
What do the apps folks need to know?Need a figure showing the CUDA API layer, and device API layerShould include the remote device abstraction

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Remote Device Layer

Remote procedure call layer for Ocelot device calls
Execute local applications that run kernels remotely
Multi-GPU applications can become multi-node

21

21

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot Internal Structure1
PTX Kernel

1G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for Bulk Synchronous Applications
in Heterogeneous Systems,” PACT, September 2010. .

CUDA Application

nvcc

Ocelot is built with nvcc and the LLVM backend
 Structured around PTX IR LLVM IR Translator

Compile stock CUDA applications without modification

Other front-ends in progress: OpenCL and Datalog

22

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

For Compiler Researchers

Analysis Pass Transformation
Pass

Metadata

 Pass Manager Orchestrates analysis and transformation passes
 Analysis Passes generate meta-data:

 E.g., Data-flow graph, Dominator and Post-dominator trees, Thread frontiers
 Meta-data consumed by transformations

 Transformation Passes modify the IR
 E.g., Dead code elimination, Instrumentation, etc.

Pass Manager

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Outline

Drivers and Evolution to Heterogeneous Computing

The Ocelot Dynamic Execution Environment

Dynamic Translation for Execution Models

Dynamic Instrumentation of Kernels

Related Projects

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Execution Model Translation

Serialization Transforms

JIT for Parallel Code

Utilize all resources

25

kernel fusion/fission

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Translation to CPUs: Thread Fusion
Execution Manager
• thread scheduling
• context management Thread Blocks

Multicore Host Threads

Thread
serialization

 Execution Model Translation
 Distinct from instruction translation
 Thread scheduling
 Dealing with specialized operations, e.g.,

custom hardware
 Handing control flow and synchronization
 Mapping thread hierarchies, address

spaces, fixed functions, etc.

One worker pthread per CPU core

Execute a kernel

26

G. Diamos, A. Kerr, S. Yalamanchili and N. Clark, “Ocelot: A Dynamic Optimizing Compiler for Bulk-Synchronous Applications
in Heterogeneous,” PACT) 2010.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Dynamic Thread Fusion

Dynamic warp formation
What are the implications for cache behavior?

Optimize for control flow divergence
Improve opportunities for vectorization

27

Each thread
executes this code

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Overheads Of Translation
Sub-kernel size = kernel size

Amortized with the use of a
code cache

Challenge: Speeding up
translation

Parboil Scaling

28

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Target Scaling Using Ocelot

The 12x Phenom vs. Atom advantage 9.1x-11.4x speedup
The 40x GPU vs. Phenom advantage 8.9x-186x speedup

 Upper end due to use of the fixed function hardware accelerators vs.
software implementation on the Phenom

29

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Key Performance Issues

JIT compilation overheads
Dead code
 Kernel size
 Thread serialization granularity

JIT throughput due to bottlenecks
 Access to the code cache
 Access to the JIT
 Balancing throughput vs. JIT compilation overhead

Program behaviors
 Synchronization
 Control flow divergence
 Promoting locality

30

Specialization +
Code caching

Sub-kernels

Sub-kernels +
Dynamic Warp

Formation

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Can We Do Even Better?

Use the attached vector units within each core

SSE/AVX Vector
extensions per core

31

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Vectorization of Data Parallel Kernels

What about control flow divergence?
What about memory divergence?

32

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Intelligent Warp Formation

Yield-on-diverge: divergent
threads exit to the execution
manager

The execution manager selects
threads (a warp) for
vectorization

A priori specialization and code
caching to speed up
translations

33

A. Kerr, G. Diamos, and. S. Yalamanchili, “ Dynamic Compilation of Data Parallel Kernels for Vector Processors,” International
Symposium on Code Generation and Optimization, April 2012.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Vectorization: Performance

34 34

 Intel SandyBridge (i7-2600), SSE 4.2, Ubuntu 11.04 x86-64, 8 hardware
threads

Ocelot 2.0.1464 linked with LLVM 3.0.

Average Speedup of 1.45X over base translation

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

System Impact

Scope of optimization is now enhanced kernels can
execute anywhere
Multi-ISA problem has been translated into a scheduling and
resource management problem

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Summary: Dynamic Execution Environments

Language Layer

Dynamic Execution Layer In
tro

sp
ec

tio
n

La
ye

r

Core dynamic compiler and run-time system
Standardized IR for compilation from domain specific
languages
Dynamic translation as a key technology

Domain Specific Language
Datalog

CUDA

OpenCL

DSLs?

Harmony & Ocelot

Productivity Tools
• Correctness & Debugging
• Performance Tuning
• Workload Characterization
• Instrumentation

36

Kernel IR

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

System Software Challenges of Heterogeneity

Execution Portability
–Systems evolve over time
–New systems

esd.lbl.gov

math.harvard.edu

Sandia.gov

Run-Time

Dynamic
Optimizations

OS/VM

Device interfaces

Language Front-End

Emerging Software
Stacks

Pr
od

uc
tiv

ity
 T

oo
ls

Performance Optimization

Introspection
Productivity tools

Application Migration
–Protect investments in
existing code bases

37

발표자
프레젠테이션 노트
Why this is different from the embedded world

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Outline

Drivers and Evolution to Heterogeneous Computing

The Ocelot Dynamic Execution Environment

Dynamic Translation for Execution Models

Dynamic Instrumentation of Kernels

Related Projects

38

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Dynamic Instrumentation as a Research Vehicle

Run-time generation of user-defined, custom instrumentation
code for CUDA kernels

Goals of dynamic binary instrumentation
Performance Tuning

Observe details of program execution much faster than simulation

Correctness & Debugging
 Insert correctness checks and assertions

Dynamic Optimization
 Feedback-directed optimization and scheduling

39 School of ECE | School of CS | Georgia Institute of Technology
39

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Lynx: Software Architecture

Inspired by PIN

Transparent instrumentation of CUDA applications

Drive Auto-tuners and Resource Managers

40

nvcc

PTX

Ocelot Run Time

CUDA

Libraries

Instrumentation APIs

In
st

ru
m

en
to

r

C-on-Demand JIT

C-PTX Translator

PTX-PTX Transformer

Lynx

Example Instrumentation Code

40

N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan and S. Yalamanchili, “Lynx: Dynamic Instrumentation System for Data-Parallel
Applications on GPGPU-based Architectures,” ISPASS, April 2012.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Lynx: Features

Enables creation of instrumentation routines that are
Selective – instrument only what is needed
Transparent – without changes to source code
Customizable – user-defined
Efficient – using JIT compilation/translation

Implemented as a transformation pass in Ocelot

College of Computing | School of ECE | Georgia Institute of Technology 41

41

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Example: Computing Memory Efficiency

Memory Efficiency = (#Dynamic Warps/#Memory_Transactions

42

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Lynx: Overheads

43

Overheads are proportional to control flow activity in the
kernels

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Comparison of Lynx with Some Existing GPU Profiling Tools

44 School of ECE | School of CS | Georgia Institute of Technology

FEATURES Compute
Profiler/CUPTI

GPU Ocelot
Emulator

Lynx

Transparency
Support for Selective

Online Profiling

Customization
Ability to Attach/Detach
Profiling at Run-Time

Support for Comprehensive
Profiling

Support for Simultaneous
Profiling of Multiple Metrics

Native Device Execution

44

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Applications of Lynx

Transparent modification of functionality
 Reliable execution

Correctness tools
Debugging support
 Correctness checks

Workload characterization
 Trace analyzers

45

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Applications of Ocelot

46

Harmony Run-Time

Productivity Tools

Dynamic Compilation

Eiger:

 PTX 2.3 emulator
 Correctness and debugging tools
 Trace Generation & Profiling tools
 Dynamic Instrumentation (ala PIN for

GPUs)

 Red Fox: Compiler for Accelerator
Clouds

 DSL-Driven HPC Compiler
 OpenCL Compiler & Runtime

(joint with H. Kim)

 Workload Characterization
and Analysis

 Synthesis of models

 Mapping & scheduling
 Optimizations: speculation,

dependency tracking, etc.

46

Done

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Application: Data Warehousing

Massive data sets

On-line and off-line analysis
 Retail analysis
 Forecasting
 Pricing
……

Combination of data queries and
computational kernels

Potential to change a companies
business model!

Multi-resolution

Large Graphs

Images from math.nist.gov, blog.thefuturescompany.com,melihsozdinler.blogspot.com

Database and Data Warehousing

47

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Domain Specific Compilation: Red Fox

48

LogicBlox Front-End

Datalog-to-RA
(nvcc + RA-Lib)

Harmony

src-src
Optimization

Ocelot

IR
Optimization

Datalog Queries

RA
Primitives

Language
Front-End

Translation
Layer

Machine Neutral
Back-End

Targeting Accelerator
Clouds for meeting the

demands of data
warehousing applications

Joint with LogicBlox Inc.

Harmony
Kernel IR

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Feedback-Driven Optimization: Autotuning

Use Ocelot’s dynamic instrumentation capability
Real-Time feedback drives the Ocelot kernel JIT
Decision models to drive existing/new auto-tuners

 Change data layout to improve memory efficiency
 Use different algorithms
 Selective invocation hot path profiling algorithm selection

49

Decision Models

Measurements Code Generation

Workload Characterization

Not available
with CUPTI

49

발표자
프레젠테이션 노트
Naila was able to get instrumented data and invoke the JIT. We have not yet done anything fancy with it.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

OCelot

Feedback-Driven Resource Management

Real time customized information available about GPU usage

Can drive scheduling decisions

Can drive management policies, e.g., power, throughput, etc.

50

Instrumented
PTX

Instrumented
PTX

Applications

Management Layer

GPU Clusters

Instrumented
PTX

PTX

Instrumentation APIs

In
st

ru
m

en
to

r

C-on-Demand JIT

C-PTX Translator

PTX-PTX Transformer

Instrumentation

50

Ocelot’s Lynx

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Workload Characterization and Analysis
 SM Load Imbalance (Mandelbrot)

Intra-Thread Data Sharing

Activity Factor

51

A. Kerr, G. Diamos, and S. Yalamanchili, A characterization and analysis of PTX kernels," IEEE International Symposium on Workload Characterization,
Austin, TX, USA,

October 200

발표자
프레젠테이션 노트
Imagine if you had the same interface between the emulator and the device. Then all of the trace analyzers we have developed for the emulator can be used with instrumented data, e.g. workload characterization

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Constructing Performance Models: Eiger

Develop a portable methodology to discover relationships
between architectures and applications

52

Adapteva’s multicore from electronicdesign.com

Extensions to Ocelot for the synthesis of performance models
 Used in macroscale simulation models
 Used in JIT compilers to make optimization decisions
 Used in run-times to make scheduling decisions

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Eiger Methodology

Use data analysis techniques to uncover application-
architecture relationships
Discover and synthesize analytic models

Extensible in source data, analysis passes, model
construction techniques, and destination/use

53

Ocelot JIT SST/Macro

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Ocelot Team, Sponsors and Collaborators

• Ocelot Team
 Gregory Diamos, Rodrigo Dominguez (NEU), Naila

Farooqui, Andrew Kerr, Ashwin Lele, Si Li, Tri Pho, Jin
Wang, Haicheng Wu, Sudhakar Yalamanchili & several
open source contributors

54

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Thank You

Questions?

55

	슬라이드 번호 1
	System Diversity
	Outline
	Evolution to Multicore
	Consolidation on Chip
	Major Customization Trends
	Asymmetry vs. Heterogeneity
	HPC Systems: Keeneland
	A Data Rich World
	Enterprise: Amazon EC 2 GPU Instance
	Impact on Software
	Will Heterogeneity Survive?
	System Software Challenges of Heterogeneity
	Outline
	Ocelot: Project Goals
	Key Philosophy
	NVIDIA’s Compute Unified Device Architecture (CUDA)
	Need for Execution Model Translation
	Ocelot Vision: Multiplatform Dynamic Compilation
	Ocelot CUDA Runtime Overview
	Remote Device Layer
	Ocelot Internal Structure1
	For Compiler Researchers
	Outline
	Execution Model Translation
	Translation to CPUs: Thread Fusion
	Dynamic Thread Fusion
	Overheads Of Translation
	Target Scaling Using Ocelot
	Key Performance Issues
	Can We Do Even Better?
	Vectorization of Data Parallel Kernels
	Intelligent Warp Formation
	Vectorization: Performance
	System Impact
	Summary: Dynamic Execution Environments
	System Software Challenges of Heterogeneity
	Outline
	Dynamic Instrumentation as a Research Vehicle
	Lynx: Software Architecture
	Lynx: Features
	Example: Computing Memory Efficiency
	Lynx: Overheads
	Comparison of Lynx with Some Existing GPU Profiling Tools
	Applications of Lynx
	Applications of Ocelot
	Application: Data Warehousing
	Domain Specific Compilation: Red Fox
	Feedback-Driven Optimization: Autotuning
	Feedback-Driven Resource Management	
	Workload Characterization and Analysis
	Constructing Performance Models: Eiger
	Eiger Methodology
	Ocelot Team, Sponsors and Collaborators
	Thank You���Questions?

